

ATOMIC ENERGY RESEARCH ESTABLISHMENT
 SEP 19.1955

REGULAR SOLUTIONS

OF GASES IN LIQUIDS. * II CONCENTRATED SOLUTIONS OF HYDROGEN AT HIGH PRESSURE

by
M. G. GONIKBERG

from

Acta Physicochemica U.S.S.R., Vol. XII, No. 6, pp. 921-930, 1940

Translated by
R. J. RICHARDSON

Acta Physicochemica U.S.S.R., Vol.XII, No.6, pp.921-930, 1940.

Regular Soluticns of Gases in Liquids

II. Concentrated solutions of hydrogen at high pressure
by M. G. Gonikberg
where \bar{v}_{1} is the partial molar volume of the dissolved gas, p the total pressure, p_{2} the vapour pressure of the solvent.

In previous work ${ }^{10}$ we attempted to shew the applicability of Hildebrand's
where N_{1} and f_{1} denote the mole fraction and the fugacity of the dissolved gas and K the Henry coefficient.

The behaviour of the infinitely dilute solutions at high pressures is given very satisfactorily by Kritschewsky and Kasamowsky's Equation:

$$
\begin{equation*}
\log \frac{\mathrm{f}_{1}}{\bar{N}_{1}}=\log \mathrm{K}+\frac{\overline{\mathrm{v}}_{1}\left(\mathrm{p}-\mathrm{p}_{2}^{0}\right)}{2 \cdot 303 \mathrm{RT}} \tag{2}
\end{equation*}
$$ investigations arises in the errors in the data on the compressibilities of most mixtures of the gases mentioned. This necessitates calculating the fugacity of the dissolved gases by the Lewis-Randall rule ${ }^{8}$ which is only valid for low concentrations of the vapour in the solvent in the vapour phase. This fact reduces still further the amount of data suitable for calculation purposes.

We now consider the thermodynamic equations for solutions of gases in liquids.

For an infinitely dilute solution, Henry's Lav is valid at low pressures:-

$$
\begin{equation*}
f_{1}=K_{\bullet} N_{1} \tag{1}
\end{equation*}
$$ of chemical and physico-chemical processes has facilitated operation with concentrated solutions of gases in liquids. Till now, however, we have not had at our disposal any theory of concentrated solutions of gases in liquids. This is due mainly to the lack of experimental data connected with investigations of the equilibrium concentrations in the liquid and vapour pheses. Unfortunately, most investigations of gas/liquid equilibrium are confined to the determination of the solubility of the gas; the error involved in the analysis of the vapour phase makes a perfect interpretation of these data impossible.

The most extensive data we have at our disposal are concerned with s:lutions of hydrogen in a series of non-polar solvents at low temperatures. These include investigations on the equilibrium $\mathrm{H}_{2}-\mathrm{N}_{2}^{1,2,3}, \mathrm{H}_{2}-\mathrm{CO}^{1}, \mathrm{H}_{2}-\mathrm{CH}_{4} 3,4,5$, $\mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}{ }^{6}$, and $\mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{6}$.

For working out the theory of concentrated solutions of gases in liquids at high pressure we shail try to interpret these data.

Another difficulty in the treatment of the rusults of the experimental
$r y^{11}$ of regular solutions (with certain assumptions) for solutions of gases theory in liquids at low pressures in the form of eqn. (3),

$$
\begin{equation*}
\log \frac{f_{1}}{N_{1}}=\log f_{1}^{0}+\frac{v_{1}}{4.58 T}\left(\frac{N_{2} v_{2}}{N_{1} v_{1}+N_{2} v_{2}}\right)^{2}\left(\frac{\sqrt{a_{1}}}{v_{1}}-\frac{\sqrt{a_{2}}}{v_{1}}\right)_{p}^{2} \tag{3}
\end{equation*}
$$

where f_{1}^{0} denotes the fugacity of the pure gas at the vapour pressure of the liquid gas extrapolated to temperature T, V_{1} and v_{2} the molai rolumes of the liquid gases at $p=1 \mathrm{~atm}^{12},\left(a_{1}\right)^{\frac{q}{2}} / v_{1}$ and $\left(a_{2}\right)^{\frac{1}{2}} / v_{2}$ the square root of the internal pressure of the components.

It was shown that at $p \rightarrow 0$ and $N_{1} \leqslant N_{2}$

$$
\begin{equation*}
\log \frac{f_{1}}{N_{1}}=\log f_{1}^{0}+\frac{v_{1}}{4.58 T}\left(\frac{\sqrt{a_{1}}}{v_{1}}-\frac{\sqrt{a_{2}}}{v_{2}}\right)_{p=0}^{2}=\log K \tag{4}
\end{equation*}
$$

where $\left(\frac{\sqrt{a_{1}}}{\mathrm{v}_{1}}-\frac{\sqrt{\mathrm{a}_{2}}}{\mathrm{v}_{2}}\right)_{\mathrm{p}=0}^{2}$ refers to zero pressure. The calculation carried out according to eqn. (3) shewed ${ }^{10}$ that the value of $\left(\frac{\sqrt{a_{1}}}{v_{1}}-\frac{\sqrt{a_{2}}}{v_{2}}\right)^{2}$ increased with the pressure.

In the present communication we shall try to discuss the dependence of this quantity on the pressure and hence work out in addition the theory of regular solutions on the basis of concentrated solutions of gases in ronpolar solvents at high pressures.

To this end we calculate, as in eqn. (2), the change of f_{1} with pressure increase and substitute the molar volumes in Hildebrand's equation by the partial molar volumes.

Hence we obtain in equation expressing not only the dependence of $\log f_{1} / N_{1}$ value on the pressure but also on the concentration:-
$\log \frac{f_{1}}{N_{1}}=\log f_{1}^{0}+\frac{\bar{v}_{1}}{4.58 T}\left(\frac{N_{2} \bar{v}_{2}}{N_{1} \bar{v}_{1}+N_{2} \bar{v}_{2}}\right)^{2}\left(\frac{a_{1}}{\bar{v}_{1}}-\frac{a_{2}}{\bar{v}_{2}}\right)_{p=0}^{2}+\frac{\bar{v}_{1}\left(p-p_{2}^{0}\right)}{2.303 R T}$
924 Comparison between eqns. (3) and (5) leads to:-

$$
\begin{equation*}
\left(\frac{\sqrt{a_{1}}}{\bar{v}_{1}}-\frac{\sqrt{a_{2}}}{\bar{v}_{2}}\right)_{p}^{2}=\left(\frac{\sqrt{a_{1}}}{\bar{v}_{1}}-\frac{\sqrt{a_{2}}}{\nabla_{2}}\right)_{p=0}^{2}+\frac{1.982}{82.07}\left(p-p_{2}^{0}\right)\left(\frac{N_{1} \bar{v}_{1}+N_{2} \bar{v}_{2}}{N_{2} \bar{v}_{2}}\right)^{2} \tag{6}
\end{equation*}
$$

The partial molar volume of the dissolved hydrogen was equated by us to the molar volume of liquid hydrogen at $p=1 \mathrm{~atm}$. (as appears probable from the data of Tainle III). Tho same gees for the partial molar volume of: the solvent. The hypothesis was alsc advanced of the independence of $\overline{\mathrm{V}}_{1}$ and \bar{v}_{2} of p and $N_{\text {. }}$. If the values of \bar{v}_{1} and \bar{v}_{2} are correctly chosen and the assumption is valid, it is evident that wo obtain with graphical representation. of the values calculated frcm experimental data of $\left(a_{1} / v_{1}-a_{2} / v_{2}\right)_{p}^{2}$ against $\left(p-p_{2}^{0}\right)\left(\frac{N_{1} \nabla_{1}+N_{2} \vec{v}_{2}}{N_{2} v_{2}}\right)^{2}$ a straight line with the slope:-

$$
\therefore \beta=1.982 / 82.07=0.02415
$$

From the intercept of this line with the ordinatc, the Henry coefficient at $\mathrm{p}, \mathrm{N}_{1} \rightarrow 0$ is calculated.

We tested the applicability of eqn. (5) with the data on the equilibrium $\mathrm{H}_{2}-\mathrm{CO}$ - at $68.10,73.10$ and 83.10 K up to $200-225 \mathrm{~atm}$. and 40.1% hydrogen content, $\mathrm{H}_{2}-\mathrm{N}_{2}{ }^{1}$ at $63.10,68.1^{\circ}$ and $78.1^{\circ} \mathrm{K}$ up to $160-215$ atm. and $37.9 \% \mathrm{H}_{2}, \mathrm{H}_{2}-\mathrm{CH}_{4}{ }^{5}$ at 90.30 and $110 \% \mathrm{~K}$ up to $190-220$ atm. and $15.6 \% \mathrm{H}_{2}$ and $\mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}$ at 188.10 K up to 50 atm . and $3.6 \% \mathrm{H}_{2}$.

In the following table are shown, by way of example, the data for the system $\mathrm{H}_{2}-\mathrm{N}_{2}$. The $\mathrm{f}_{\mathrm{H}}^{2}$ value was calculatcd according to the Lewis-Randall rule and $\mathrm{f}_{\mathrm{f} 2}$ as in the previous paper. ${ }^{10}$ The calculating of the fugacities was taken from Newton diagrams. 13

We now consider the change of the $\log \mathrm{f}_{1} / \mathrm{N}_{1}$ value with the pressure according to the data of this table. At $63.10 \mathrm{~K}, \log \mathrm{r}_{1} / \mathrm{N} 1$ increases with the pressure so that it appears to follow eqn. (2). At 68.10 K

$\log f_{1} / N_{1} \simeq$ const., which can be construed as proof of the applicability of c qn. (1). But at $78.1^{\circ} \mathrm{K}$ (and at still higher temperature ${ }^{2}$) log $\mathrm{f}_{1} / \mathrm{N}_{1}$ decreases with increase of prossure i.c. on calculation with eqn. (2), negative values of the partial molar volume of hydrogen arise-which is very doubtful.

In Fig. 1 the data qucted above on the solubility of H_{2} in $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{CH}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ are plotted in a co-ordinate system corresponding to eqn. (6).

The straight lines obtained from these prove that the partial molar volumes of hydrogen in one and the same sclvent are equal at different concentrations and pressures (within the limits of experimental error).

In the following table are given the values of $\beta / 0.02415$ calculated from these lines.

From the data of these tables it can be concluded that in the neighbourhood of the freezing point of the solvent (65.90 K for $\mathrm{CO}, 63.10 \mathrm{~K}$ for N_{2}, 90.10 K for CH_{4}) the partial molar volumes of the dissolved hydrogen are approximately equal to one another and moreover seem also to lie very close to the molar volumes of liquid hydrogen at $p=1$ atm. $\left(28.6 \mathrm{~cm}^{3}\right)$.

Rcughly the same values rosult with the approximate calculation of the solubility data of. H_{2} in $\mathrm{C}_{6} \mathrm{H}_{6}$ at $298.1^{\circ} \mathrm{K}^{14}$, (since the data on the composition of the vapour phase are in error.)

TABIT II

solvent	T (OK)	$\frac{\beta}{0.02415}$
CO	68.1	0.987
CO	73.1	0.962
CO	83.1	0.790
$\mathrm{~N}_{2}$	63.1	0.878
$\mathrm{~N}_{2}$	78.1	0.882
$\mathrm{~N}_{2}$	88.1	0.696
CH_{4}	90.3	0.965^{*}
CH_{4}	110.0	1.002
$\mathrm{C}_{2} \mathrm{H}_{4}$	188.1	0.787

*The calculation of these data according to eqn. (2) gave $\overline{\mathrm{v}}_{\mathrm{H}_{2}}=6 \mathrm{~cm}^{3}$.

It should be noted that the $\overline{\mathrm{v}}_{\mathrm{H} 2}$ values salculated according to eqn. (5) arc higher than those calculated according to eqn. (2) (where this is possible). This is, perhaps, an explanation of the fact that the partial molar volumes determined by dilatometric methods are also higher than those calculated according to eqn. (2). 15

> It seems to us that the data and calculations outlined above bear out the applicability of the theory of regular solutions to concentrated solutions of hydrogen in ncn-polar liquids at high pressures.

The constancy of the V_{2} values thus obtained with different concentrations and pressures obviously proves that the dependenve of the partial molar volumes of the hydrogen on p and N does not lead to errors exceeding the magnitude of experimental erroi.

The fact that the $\overline{\mathrm{v}}_{\mathrm{H} 2}$ values under cortain conditions lie close to the values of the molar volume of liquid hydrogen is very interesting although an investigation on other gases is also required.

Unfortunately, the paucity of experimental data makes the application of the theory of regular solutions to the solutions of other gases difficult.

In the work of Iljinskaya ${ }^{15}$, is to be noted the similarity of the values obtained by her for the partial molar volumes of the gases in water at 273.10 K , to the value of the constant ' b ' in the Van der Waals equation. In the following table the mean values of the data obtained by her and other workers by dilatometric methods are compared with the constants ' b ' and the molar volumes of the liquid gases at $p=1 \mathrm{~atm}$.

TABLE III

Gas	$\overline{\mathrm{V}}$	L $\left(\mathrm{in}^{3}\right)$	$\overline{\mathrm{v}}$
N_{2}	36.4	39.1	35.0
H_{2}	24.3	26.6	28.6
O_{2}	27.1	32.3	28.1
CH_{4}	35.3	42.7	37.7
CO	35.7	39.9	36.0

From the data of this table it follows that the $\overline{\mathrm{v}}$ values of the gases in water at their freezing point also approach the molar volumes v of the liquid gases at $p=1 \mathrm{~atm}$.

Further investigations are required to deal vith this question.
If we knew the partial molar volumes of the Aissolved gases it would be possible with the help of these to ascertain all the other quantities in the fundarnental equation of the theory of regular solutions. This is apparent from the following simple procedures.

From eqn. (5) we obtain
$\log \frac{f_{1}}{N_{1}}-\frac{\bar{v}_{1}\left(p-p_{2}^{0}\right)}{2 \cdot 303 R T}=\log f_{1}^{0}+\frac{\vec{v}_{1}}{4 \cdot 58 T}\left(\frac{N_{2} \bar{v}_{2}}{N_{1} \bar{v}_{1}+N_{2} \bar{v}_{2}}\right)^{2}\left(\frac{\sqrt{a_{1}}}{\bar{v}_{1}}-\frac{\sqrt{\bar{a}_{2}}}{\bar{v}_{2}}\right)_{p=0}^{2}$
If we plot graphically the values of $\log \frac{f_{1}}{\bar{N}_{1}}-\frac{\bar{\nabla} 1\left(p-p_{2}\right)}{2 \cdot 303 R T}$ against those of $\left(\frac{I_{2} \overline{\mathrm{v}}_{2}}{\mathrm{~N}_{1} \overline{\mathrm{~V}}_{1}+\mathrm{N}_{2} \overline{\mathrm{~V}}_{2}}\right)^{2}$ we should obtain a straight line whose interccpt with the ordinate gives the value of $\log f_{1}^{\circ}$. From the slope of this line $\left(\frac{\sqrt{a_{1}}}{\bar{v}_{1}}-\frac{\sqrt{a_{2}}}{\bar{v}_{2}}\right)_{p=0}^{2}$ can be calculated. ${ }^{16}$

In subsequent work we intond to test by this method the applicability of the derived equations above for other gases with holp of the most probable \vec{v} values.

Summary

1. An equation was proposed which describes gas/non-polar liquid equilibrium at high concentrations and pressures.
2. The applicability of this equation to solutions of hydrogen in liquid $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{CH}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ at high pressures and concentrations of the dissolved gas was shewn.
3. It was shewn that under cortain conditions, the values of the partial moler volumes of the dissolved hydrogen in the solvents investigated lic close to one another and to the molar volume of liquid hydrogen at $\mathrm{p}=1 \mathrm{~atm}$.
4. It has been shewn that the assumption about the independence of the partial molar volume from the concentration and the pressure for the system considered does not give rise to errors in excess of the experimentel crror.

Electrotochnical Institutc of the U.S.S. R. lioscow. Rec'd 28th Feb. 1940.

Roferences

1. Vorschoylc, Phil. Trans. Roy. Soc. A 230, 189 (1931).
2. Gonikberg, Fastowsky and Gurwitsoh, Acta Physicochímica U.S.S.R. 11, 865 (1939).
3. Steckel and Zin., Z. chom. Ind. (Russian) 16, 24 (1939).
4. Frooth and Vorschoyle, Proc. Roy. Soc. A 130, 435 (1931).
5. Frastowsky and Gonikborg, Acta Physicochimica U.S.S.R. 12, 485 (1940).
6. Lichter and Tichonowitsch, Z.tcchn.Phys. (Russian), 9, 1916 (1939).
7. Lewitskaya and Prjannikow, Z.tcchn.Phys. (Russian), 9,1849 (1939).
8. Lowis and Randall, "Thormodynamics and Froc Encrgy of Chemical Substances" .
9. Kritschewsky and Kasarnowsky, Z.physik. Chem. (Russian) 6, 1320 (1935).
10. Gonikberg, Acta Physicochimica U.S.S.R. 12, 489 (1940).
11. Hildebrand, "Solubility of Non-Elcotrolytos", (1936).
12. In the general case v_{2} denotes the moler volume of the solvent.
13. Newton, Ind.Eng.Chem., 27, 302 (1935).
14. Ipatjow and Lewina, Z.physik.Chorn. (Russian) 6, 632 (1935).
15. Il jinskrya, "Pertial moler volumes" (Dissert. Russian) (1940).
16. If we know the \bar{v}_{1} valuc it is also possible to calculate the $a^{\frac{1}{2}} / \bar{v}_{1}$ values from the Van der Waals constants a when the extrapolation of $a^{\frac{1}{2}} / \mathrm{v}$ becomes unnecessary. (Scc previous paper.)

Fig. 1. $1-\mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}\left(188.1 \mathrm{O}_{\mathrm{K}}\right) ; 2-\mathrm{H}_{2}-\mathrm{CH}_{4}\left(90.3^{\circ} \mathrm{K}\right)$;

$$
\begin{aligned}
& 3-\mathrm{H}_{2}-\mathrm{CH}_{4}\left(110.0 \mathrm{O}_{\mathrm{K})} ; 4-\mathrm{H}_{2}-\mathrm{CO}\left(68.1^{\circ} \mathrm{K}\right) ;\right. \\
& 5-\mathrm{H}_{2}-\mathrm{N}_{2}\left(63.1^{\circ} \mathrm{K}\right) ; 6-\mathrm{H}_{2}-\mathrm{CO}\left(73.1^{\circ} \mathrm{K}\right) ; \\
& 7-\mathrm{H}_{2}-\mathrm{N}_{2}\left(68.1^{\circ} \mathrm{K}\right) ; 8-\mathrm{H}_{2}-\mathrm{CO}\left(83.1^{\circ} \mathrm{K}\right) ; \\
& 9-\mathrm{H}_{2}-\mathrm{N}_{2}\left(78.1^{\circ} \mathrm{K}\right) .
\end{aligned}
$$

